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Abstract—We utilise collaborative path-finding to improve
efficiency of smart parking systems and therefore reduce traffic
congestion in metropolitan environments, while increasing effi-
ciency and profitability of parking garages. A significant portion
of traffic in urban areas is accounted for by drivers searching for
an available parking space. Many cities have adopted a parking
guidance and information system to try to alleviate this traffic
congestion. Typically these systems entail informing the driver of
the whereabouts of an available space, reserving that space for the
specific driver, and providing directions to reach the destination.
Little or no account is taken of how much congestion will be
caused by multiple drivers being directed to the same car-park
concurrently. We introduce the concept of collaborative path-
finding to the problem. We simulate a smart parking system
for an urban environment, and show that a novel approach to
collaboratively planning paths for multiple agents can lead to
reduced traffic congestion on routes toward busy parking areas,
while reducing the amount of time when parking spaces are
vacant, thereby increasing the revenue earned.

I. INTRODUCTION

Drivers searching for a vacant car-parking space can ac-
count for more than 30% of traffic in a metropolitan area
at any particular time [1]. Clearly a smart parking system
which can efficiently guide motorists to available parking
spaces could alleviate this problem. Traffic authorities in many
cities have instigated parking guidance and information (PGI)
systems, providing drivers with up-to-date information on the
availability and location of parking spaces [2]. The information
may be presented to drivers via dynamic street signage, or over
the internet.

Many smart parking schemes exist based on resource
allocation and reservation [3], [4], [5], whereby the PGI system
knows how many spaces are currently available at each site
and drivers are directed accordingly. The systems are typically
based on locating the car-park or street with available spaces
which is nearest to either the driver’s entry point into the
controlled area, or the driver’s intended destination within
that area. Many systems also identify the most suitable space
by including a pricing factor, sometimes based on auction or
electricity trading (in the case of electric or hybrid vehicles)
[6]. When the target parking space has been identified and
reserved, a Global Positioning System (GPS) can be used to
plot the driver’s route to the parking destination. This can result
in multiple vehicles being directed toward the same parking
garage at the same time, or along routes which cross over
one another, which can lead to further traffic congestion along
those routes.

In this paper we introduce the concept of collaborative
path-finding to the field of smart parking. We adapt a standard
A-star path-finding algorithm to incorporate multiple agents
plotting paths concurrently, while taking into account one an-
other’s progress along their assigned routes. In our simulation,
the agents represent drivers being assigned a parking space, the
destinations are the locations of the parking spaces themselves,
and the nodes of the path-finding grid are the streets and
junctions of the metropolitan area. Our approach considers
multiple scenarios wherein agents have taken different deci-
sions in order to avoid over-occupying the same node on the
path-finding grid. A selection technique is employed to identify
the scenario which provides the most efficient solution for all
agents at any particular time.

We show that employing this ”smart routing”scheme within
a PGI system can be beneficial in a number of ways. Conges-
tion is reduced, as drivers are sent along routes which do not
interfere with one another. A dynamic approach ensures that,
as new drivers enter the controlled area, they are not only
assigned an available space, but are assigned a route which
causes minimal further congestion. Journey times for drivers
are therefore reduced. The approach also leads to greater
efficiency for the parking garages themselves, as spaces are
vacant for smaller amounts of time, so revenue is earned over
a greater proportion of the day.

II. BACKGROUND AND RELATED WORK

In this paper we build on our previous work in applying
complex system protocols to domains of commercial interest
[7]. We present a brief background to the fields of smart
parking and multi-agent path-finding, in order to arrive at our
contribution of smart routing.

A. Smart Parking

Parking guidance and information systems play an increas-
ingly vital role in most major metropolitan areas worldwide
[3]. Car parking is a revenue generator, rather than a cost cen-
tre, in most cities. Utilising a smart parking system can have
a positive effect on that revenue due to improved occupancy
rates, market-sensitive pricing and more efficient revenue col-
lection. Further to this, the benefits to both commerce and the
environment of reducing traffic congestion make smart parking
an attractive proposition.

Earlier implementations of PGI schemes involved inform-
ing drivers on the availability of spaces and guiding them
toward parking garages or streets identified as having free



spaces [2]. This could often result in many drivers being
directed toward the same place while car-parks with only a
few spaces were being ignored, even if they presented a better
solution. More recently, schemes have introduced the concept
of reservations, whereby a a driver is allocated a specific space
which is then marked as unavailable until the specific driver
arrives [4]. The reserved space may be password protected
until the assigned driver arrives (passwords are communicated
through SMS) [8]. The reservation approach has been aug-
mented by the introduction of, for example, auctioning, price
factoring, and trading of electricity, in the case of hybrid and
electrical car schemes [6].

Technology for detecting whether a parking space is oc-
cupied (including inductive loops, weight sensors, pneumatic
road tubes, etc.) is beyond the scope of this paper; for our
purposes it is assumed that information on the occupancy and
location of spaces is available and correct.

Little or no work has been carried out on planning how
drivers reach their allocated parking space. Existing systems
typically rely on GPS navigation for individual drivers, or
dynamic roadside signage for directing many vehicles along
a shared route [5]. These approaches take no account of the
congestion, and therefore time delays, introduced by sending
multiple vehicles along shared routes toward reserved smart
parking spaces. Further congestion can be introduced at streets
or traffic junctions where directed routes intersect. In this
paper we address for the first time the issue of planning
route information for multiple vehicles approaching allocated
parking spaces, by the application of a novel collaborative
path-finding approach.

B. Collaborative Path-finding

Finding a path through an environment for a single agent is
a well understood problem [9]. However extending this work
to consider multiple agents working together to find the most
mutually beneficial paths is an ongoing research topic. The
multi-agent problem is PSPACE-hard, wherein the number
of states and branching factor grow exponentially with the
number of simultaneously moving agents [10].

David Silver [11] explores an algorithmic solution to
the issue which sacrifices some optimality, and introduces
behavioural irregularities, in order to minimise the branching
complexity of the issue. While Silver’s system is highly
intuitive, and appropriate for many real-time systems where
pathing conflicts can be offset using secondary algorithms, it is
vulnerable to unresolvable conflicts in more complex systems.

It has been noted that, in the non-collaborative case, multi-
agent path planning is suitable for general purpose GPU
computing due to the independently parallel nature of the cal-
culations [16]. Significant efforts have been made to reduce the
complexity of A-star for multiple agents through subdivision of
the search space [12], [13], demonstrating performance gains
over the traditional case. Many algorithmic approaches balance
computability against absolute optimality [14], [15].

Our approach in this context is similar, in that absolute
optimality is not necessarily beneficial in the domain of traffic
routing, given how swiftly situations on the road network can
change. As such, we opt to relax our optimality conditions in

favour of prompt, computationally inexpensive update through-
put.

Also relevant to our own work, Sharon et al [17] pro-
posed Conflict-Based Search, which minimises the search-
space through consideration solely of collision points. In this
fashion, Sharon’s work has analogues with our own; the
approach we shall proceed to outline in section III has a similar
basis, but considers the problem from a more agent-centric
rationale.

The original contribution of our work, then, comes in two
parts. First, a novel, conflict-based approach to multi-agent
path planning and, second, the application of that approach to
smart parking techniques. We call this combined, collaborative
approach smart routing.

III. PROTOCOL

In this section, we present our smart routing protocol for
multi-agent path finding. Our algorithm is a variant on multi-
agent path finding using A-star. Utilising a square grid we
represent a portion of a city, each square containing data
concerning the capacity of the corresponding area of the road
network. Using the idea of reversing the direction of A-
star we determine the exact distance to a goal. Employing
reverse A-star as our heuristic for distance, we reason about
the possibilities that a square on our grid can take, each
possibility being a specification of that particular square. This
specification allows us to reference a look up table to help
make decisions.

We apply an ordering to each cardinal direction, enabling
us to remove arbitrary decisions from the system. This implies
an ordering on paths from their respective starts to their goals.
Using specific paths relating to this ordering we can construct
any possible route on the grid. We call routes constructed in
this manner vehicle routes or agentverses. We select groups
of vehicle routes together to represent all the vehicles in the
system. We call these groups collective routes or multiverses.

The goal of our algorithm is to select a collective route
which minimizes the total congestion within the system. We
achieve this by applying A-star to the collective routes. We
run a set number of iterations of A-star over the collective
routes, storing results with low congestion while the algorithm
maintains lower total path length. When congestion is detected
within a collective route, the algorithm redirects random por-
tions of the traffic to create a new collective route which is
reintroduced back into the algorithm.

In our experiments the path finding algorithm is applied
once every time step of the system. This simulates an evolving
system, allowing us to introduce new vehicles into the system
to test the adaptability of the protocol. Key elements of the
algorithm are discussed below.

A. Path finding

Our approach to optimised car-park routing requires the
definition of several algorithmic terms that are used throughout
this work. In this section we outline the concepts underpinning
the algorithm.



Grid Square: In this context, grid squares of the map (or
graph) can be considered to represent likely points of intersec-
tion between flows of traffic rather than a truly representative
route-map of a city. The grid square structure contains several
important variables in our algorithm. Specifically, the structure
permits us to determine the position of a grid square, its
implicit neighbours, and a capacity value for each direction
(including ’pausing’, which is an increment through time rather
than space). These capacities represent sustainable throughflow
of traffic.

Node: One approach to solving multiagent path planning
is to represent the state of every agent at every timestep as a
node. In our simulation, the term node represents a collection
of potential, complete routes - one for each vehicle within the
system.

Reverse A-star: Reverse A-star is a useful technique to
calculate a perfect heuristic [11]. The principles of generic
A-star [9] are applied to every square on the graph, from the
agent’s goal. The heuristic cost is therefore not a ’best guess’,
but an accurate cost from a given square n to the goal assuming
no changes to the environment occur during the journey. Given
that an A-star system is always aware of the absolute cost
taken to reach the square under consideration, Reverse A-star
provides an exact and absolute cost for any given route. For our
purposes, this should be considered the exact cost (in terms of
time to travel the route) between a given carpark and any point
at which a given car might be located in the map, assuming
the car does not need to avoid traffic choke points.

Node Possibilities and Costs: Assuming a normalised
graph, the application of Reverse A-star facilitates a valuable
algorithmic optimisation. Specifically, it permits us to reason
that if we consider a given square n, that the neighbouring
squares to n can only have one of three heuristic pathing costs
associated with them: h, h + 1 or h − 1, where h is the cost
of the considered square n.

In the special case of a square grid the possibilities are
reduced to h + 1 and h − 1. In our applied protocol, when
combined with the perfect heuristic outlined above, this per-
mits us to employ our path-planning in a step-by-step fashion.
In terms of engineering optimisation, this enables us to assign
a specification to each square and reference a look-up table
for swift decision-making when rerouting.

Path Ordering: A consequence of the normalised graph in
conjunction with Reverse A-star is that the system will often
be required to decide between squares of equal heuristic cost
(if re-pathing, h+ 1). In order to assist that decision-making,
we introduce a new property to the pathing algorithm which
favours (prioritises) one direction over another of equal cost.

For our purposes when plotting routes for multiple agents
through time, pausing is considered a direction in its own right,
and indicates not only consequences of traffic flow but, addi-
tionally, opportunities which careful traffic flow management
can encourage. The inclusion of a direction priority implicitly
defines an ordering on the paths from a square to a goal; from
each square on the graph we can select a preferred, unique path
to the goal, which we call the α path. A path with a higher f
value would be higher on the list, but within the same f value
set ordering is decided lexically with respect to the ordering
of directions. We call this process ’preferential ordering’.

B. Vehicle Route or Agentverse

We employ the term vehicle route, or agentverse, as a
means of differentiating between the path proposed by a single
vehicle to reach its destination, and the overall collective
route or multiverse. A vehicle route is the path proposed
for a given vehicle to reach its destination carpark, with no
consideration of the other cars moving through the map. A
key assumption in our approach is that vehicle routes will be
largely similar to their most optimal paths, meaning they rank
lower (better) in terms of preferential ordering. The collective
route, functionally, is a collection of suitable vehicle routes
which reduce congestion.

We represent vehicle routes in our algorithm as segments
of optimal paths. As such, we can use segments of α paths
to represent all paths. Vehicle routes are represented using
a start time, an α path, and a past. The past is a reference
to another vehicle route from which the currently considered
route branched. In this fashion, the solution’s memory footprint
and computational complexity is lowered. The beginning of
a particular vehicle route segment connects to a point along
another route segment for the same vehicle.

These connections are the only way a vehicle route can
transition in a manner out of the preferred order. They are
triggered generally in a case where an α path is found to
be potentially non-viable due to square occupancy (too many
vehicles being advised to pass through a given intersection,
potentially leading to unmanageable congestion).

Let us consider the following example, at time step t.
The directions South and West are toward the goal. South
is favoured by preferential ordering, but we can construct a
vehicle route with start time t+1 starting directly to the West
of the current square. This vehicle route, with the original as
its past, would have the same f value as the current vehicle
route but would represent a path which took West as its next
direction at time t.

The same can be done with the North and East directions
but this will yield a vehicle route with an increased cost of f+
2. A pause can also be represented. This is done by repeating
the current square as the start of the α path, with the same
start time of t+ 1 and past, as the other examples.

The only vehicle route segments without a past are the
initial vehicle routes computed at the beginning of the planning
algorithm. This initial vehicle route stores the complete α path
from the vehicle’s start square to the goal, with a start time
of 0. All vehicle route segments will ultimately form a chain
that leads back to this initial vehicle route, forming a traceable
tree from which the final vehicle route is assembled.

One potential issue with regards process efficiency and
memory management is the recreation of vehicle route seg-
ments which already exist. We circumvent this issue by storing
forward pointers alongside the α path step data. Each step
along the path can store a pointer to a single vehicle route. If
the time of that step is t then the vehicle route would have start
time t+1, meaning that that step would be the corresponding
vehicle route’s immediate past. There can be up to at most 4
vehicle routes that would share that timestep as its immediate
past, (other directions and pause at time step t + 1). The other



vehicle routes are stored in a linked list; each vehicle route
stores a next pointer to facilitate the linked list.

C. Path Progression ”Next”

As highlighted in the previous section, multi-agent path-
planning is a PSPACE-hard problem, with computation time
exponentially connected to the number of agents being con-
sidered. In order to mitigate this issue, some form of pruning
of the state space is required, based upon domain-specific
assumptions. Our main assumption is that vehicles will pursue
routes which mostly progress towards the goal. Hence we use
combinations of fully formed vehicle routes as our nodes,
which we term a collective route, which shall be outlined later
in this section. The branches of these collective routes are
made by replacing individual vehicle routes with like routes
ranked higher (worse) in terms of preferential ordering. The
algorithm we use to do this we call ’next’.

When a vehicle route is constructed the decision of which
step to take is made immediately, comparing this to the
traditional A-star approach (in which nodes represent a single
timestep of the system), this results in branching decisions
being made out of order. In situations where the traditional A-
star approach would have selected from equivalent nodes on
the priority queue to resolve a conflict, our algorithm has made
the default decision of moving forwards, creating congestion
which we need to resolve.

We can resolve these conflicts by adding in some of these
decisions afterwards. In order to resolve these conflicts the
full A-star algorithm would have picked a node representing
an earlier timestep which could potentially avoid the conflict.
Representing this in our algorithm we need to select a branch
from a current conflicting vehicle route or one of its past
vehicle routes. This branch must happen before the timestep
of the conflict. We also prefer to branch later in time, as this
avoids adding conflicts at timesteps we have already solved.
The resulting vehicle route is of the same f value or higher,
or equivalently higher on the preferential ordering list.

Given these facts our next algorithm needs to select the
highest timestep before the conflict with a branch at a preferred
f value. The algorithm can be split into two cases, 1) the current
timestep we branch from is part of an α path of the vehicle
route, 2) the timestep is a branch of the current vehicle route
chain (i.e. the current timestep is t and the vehicle routes have
start time t+ 1).

In case 1) there is no need to consider directions past the
second in our preferential ordering of directions (this includes
Pause if no other direction moves forwards). If there is a
need to consider these cases, they will eventually be reached
as a subset of case 2), a branch of an vehicle route. This
means the ’second priority’ of a timestep becomes important
in our algorithm. The second priority can be looked up using
the specification of the current square, calculated from our
augmented reverse A-star algorithm.

In order to speed up the process of finding the needed
timestep each vehicle route stores an array of three indices
(pq), and each timestep stores a single index (pq next). The
pq array stores the maximum time that a timestep has a second
priority branch with a corresponding f value offset. This means

that pq(0) would store the maximum time step at which a
branch can be made that would not effect the f value. The
index of pq(1), and pq(2) correspond to vehicle routes with f
value + 1, and + 2 respectively. The pq next index creates a
linked list of timesteps with the same second priority.

Using this extra data we can skip ahead to a known priority
offset, then we can follow the linked list until we are below the
conflict time. This can be interleaved with another technique;
by starting at the timestep before the conflict and incrementally
testing for the correct second priority value. Together one or
the other process will eventually terminate, either with a result,
or by proving there is no branch at that priority.

D. Branch Compression ”Stem”

To reduce the number of branches we compress a set of
nodes (each being a collective route) with a common property
into a single meta node called the stem. This node can be
inserted into the priority queue with priority equal to the
minimum of the group of nodes it represents. When the stem
is popped off the queue it can be expanded into a subset of the
nodes it represents together with another stem of the remaining
nodes.

This technique has the advantage of postponing the pro-
cessing of a large number of nodes until they are needed.
Stems work most efficiently if the stem can be constructed
to have a higher f value than the remaining nodes, which will
be processed before the stem.

In the case of the next incrementing algorithm, the stem
is used to correctly split the higher f value branches from
the lower ones. Given a vehicle route, repeatedly calling
next with its result will give vehicle routes with successively
lower branches, as these branches are always available to the
algorithm. In this manner all branches at a particular f value
can be represented by one node. However if a higher f value
is needed those solutions may be cut off before they can be
considered as possibilities. If a clash happens at timestep t and
the first branch available is at timestep s < t − 1, then if the
solution lies at a higher f value, branches made between s and
t will not be considered (since the new branch replaces this
time period).

Using a stem we can use next with the same vehicle route
but using successively higher f values. This solves the issue of
missing higher f value solutions.

E. Collective Route or Multiverse

The collective route, or multiverse, is a collection of
vehicle routes, and represents a potential solution. These data
structures make up the nodes of the main A-star algorithm.
Each node has a cost associated with the sum length of the
individual vehicle routes, and each vehicle route within the
collective route has a corresponding integer value representing
its current stem (i.e. the current f value next should look for).
When a collective route is popped off the priority queue it is
checked for congestion (starting from time 0 until all agents
have reached their goal). Points of contention are placed onto
a priority queue, with priority proportional to the amount of
congestion.



After a congestion is detected and the point of highest
congestion is popped off the priority queue, a number of
random combinations of vehicle routes are incremented via
next. These combinations form individual collective routes,
and a corresponding collective route has its vehicle route’s
stems incremented. We maintain these stem nodes to preserve
the structure of branches within our algorithm. As discussed
earlier, if we did not maintain the stem, certain possibilities
would be unreachable.

For each vehicle in a collective route we store the cor-
responding goal node. In this manner we can mix collective
routes which use different goal nodes allowing a vehicle to
choose between viable goals. However we restrict the number
of possibilities, since if all combinations of vehicles and goals
were considered the system would become unmanageable (this
could be rectified with another stem system).

F. Traffic Planner

We define a data structure called the traffic planner. Its job
is to simulate a use case of the algorithm. Every timestep a
full path plan is completed for all vehicles currently in the
system. Depending on the result we move each vehicle one
step along the planned path. During each round of the full
path planning we cap the maximum number of iterations, i.e.
maximum number of collective routes considered. This ensures
the algorithm takes a reasonable time to complete.

As vehicles get added to the system we randomly pick one
goal in the simulation and free one space. This ensures the
simulation can never reach deadlock, where a vehicle does not
have a goal to reach. This does not change the semantics of
the problem since if there wasn’t a goal for a vehicle to use
it would not have been entered into the system. As vehicles
enter the system we do a full path plan with all goals available.
The resulting goal from this solution becomes that vehicle’s
permanent goal.

A priority queue is maintained using a fitness criterion to
decide priority. All the collective routes we iterate get pushed
onto this results priority queue, such that if we reach the
maximum number of iterations we do not select a collective
route which introduces more congestion.

IV. SIMULATION

We model a portion of a city with a 9x9 grid map, each grid
square representing a collection of intersecting roads. Each
square corresponds to the same journey time segment (i.e.
each square takes the same time to traverse), as opposed to
a geometric correspondence. In practice these may correspond
to geometric locations, but for our purposes a normalized cost
applies.

Each cardinal direction of each square was assigned a
random capacity between 1 and 3. These capacities simulate
the different road throughputs. A capacity of 1 might represent
a slow road, a multi-lane road subject to roadworks, or a road
with arbitrarily low traffic throughput; similarly, a capacity
of 3 might correspond to a high speed limit or a multi-
lane road operating at full capacity. All non-goal pauses were
left at capacity 1. This defines the maximum capacity of our
simulated segment of city to be roughly 730 (the number of

capacity slots a vehicle can occupy across the entire map).
We assigned 9 goals to the map, representing car parks,
and randomly distributed 125 available parking spaces among
them.

We designed two scenarios for simulation; each scenario
was run several times, generating two sets of results. Each
set varied the number of agents in increments of 20 vehicles,
starting from 20 and continuing up to 500 vehicles. Our
proportional occupancy of the road network across its length
equated to between approximately 3% and over 68%, giving
us a broad spectrum of occupancy proportions for analysis.

The first scenario deals with a constant flow of traffic. Half
the vehicles are initialised at the beginning of the simulation;
these vehicles are positioned on the map using a pseudo-
random algorithm which avoids goal squares (parking spaces).
The remainder are introduced over the next 9 time steps. We
call this scenario the ’standard traffic scenario’. This represents
a situation where a large initial spread of agents are navigating
towards parking spaces, and a lower, but still proportionally
significant, number of vehicles enters our portion of the city
over subsequent time-steps, during which all are cooperatively
and reactively navigating. This ensures an approximate con-
stant flow since the maximum distance a vehicle will travel is
18 on a 9x9 grid, on average a vehicle will travel less than half
this distance. Extending the start time any higher than 9 means
that we are no longer testing this vehicle in conjunction with
the majority of the original vehicles (equivalent to the same
results with less vehicles but higher throughput).

The second scenario starts all vehicles at time step 0. This
scenario simulates initially high throughput, which tapers off
as vehicles find their destination; this will give a higher peak
in activity but will not introduce unexpected factors such as
vehicles arriving to our portion of the city later in the simula-
tion. The scenario can be considered representative of a traffic
stress point, where the road network begins with proportionally
high occupancy, relative to the number of vehicles on it.

Whenever vehicles are positioned in the system, they are
done so using this pseudo-random method. An additional
constraint, aside from the limitation regarding goal squares,
is that the maximum number of vehicles which can begin in
a square is equal to the sum of all its capacities (four cardinal
directions, and a single pause). Agents are always added to
the simulation in the same ordering. As agents are added a
pseudo random goal is picked and its capacity is incremented.
The sequence of goals which are picked is always the same
ensuring comparisons between methods are meaningful.

Each scenario places strain on different aspects of our al-
gorithm. The first shows how our protocol handles unexpected
input into the system. Vehicles can be added to the area leading
to congestion where there would not have been before. Our
system tends to spread vehicles out among the grid squares,
which may introduce congestion when we add new vehicles,
but the system should be better adapted to handle this change.

The traffic stress point scenario has the advantage that ve-
hicles are not introduced after the first time step, meaning that
the original simulation results can be built upon. Successive
time steps will pass the point in time at which a particular
congested square was a problem and redistribute iterations onto
the later time steps. However the beginning of the simulation



will start with a high number of vehicles in arbitrary clumps,
which will be spread out through the network in later time
steps; in this fashion, occupancy is disproportionately higher
than in the former scenario. The fitness of later time steps
should almost never exceed that of earlier time steps because
there are fewer points of contention to consider (locations at
points in time), however since branching is randomized this is
not guaranteed to be the case.

We use two existing (non-collaborative) traffic routing pro-
tocols as our comparisons. The first simulates a road network
without smart parking and therefore no parking reservation.
Each vehicle uses an in-car route planner to find their route
to the nearest car park (regardless of whether that car park
has spaces available). In our simulation once these vehicles
have reached their destination they are removed whether or
not spaces are available. This is a best case for this simulation:
vehicles which reach their goal are allotted spaces unknown to
the original system. These vehicles would usually re-enter the
system in search of another car park with an available space.

Our second test run simulates a smart parking system where
parking spaces can be booked beforehand. This simulation is
run as a single iteration of our algorithm, in which case each
agent selects the nearest goal and deducts a space from it. This
guarantees each vehicle a space at the end of its route. This
test is representative of current smart parking solutions, which
to date have not taken account of collaborative path finding.
This smart parking approach would reduce congestion of traffic
searching for a space among several car parks, which is not
factored into the previous comparison.

The third test run represents our own system, combining
smart-parking with centralised smart-routing. We selected be-
tween optimal computation time and result quality to decide
the maximum number of iterations and chose a branching
factor slightly higher than 1 to determine the number of
vehicles redirected per congested square. We compare the
overall congestion as our measure of success. However we
also compare total path length to ensure we haven’t mitigated
congestion at the cost of path length. Our first test run will
always have the minimal total path length. A good result
would indicate that the additional cost of path length would
be comparable to that of smart parking with no smart routing.

V. RESULTS AND EVALUATION

The experimental results from our scenarios are presented
as data sets comparing the congestion of the system with the
summation of the total vehicle path lengths. Before informed
conclusions can be drawn regarding these factors, they should
be explicitly defined.

Total Path Length: Total path length represents the sum-
mation of each vehicle’s route time from their entry into the
simulation until they reach their respective goal. We use total
path length as an indicator of the extra distance vehicles will
have to travel as a consequence of avoiding congestion. We
require the total path length to be comparable to that of our
second comparison, smart parking.

Extension: We define extension of capacity as the differ-
ence between the activity of a capacity slot and the maximum
capacity of that slot. The extension represents how much a

particular slot is over capacity. In the case of a slot which is
under capacity this value is 0.

Congestion: Total congestion is the summation of extension
over the entire map during the entire simulation. This gives us
a measure of fitness for our algorithm: the lower the resulting
congestion, the better the algorithm has performed. This must
be offset against any cost increase in total path length.

Point of Maximum Congestion: The point of maximum
congestion is equivalent to the maximum extension, assessed
throughout the entirety of the simulation, highlighting the
location most vulnerable to congestion. The higher this value,
the more likely a given route plan is to exacerbate congestion
on a wider scale throughout the road network. This could be
considered analogous to choke points causing traffic jams, or
grid lock, in particularly busy areas of the road network.

A. Standard Traffic Scenario

The standard traffic scenario models a situation where a
large amount of traffic begins within the system, and the traffic
linearly increases over the course of the simulation.

Figures 1.1 and 1.2 illustrate the results obtained from the
three test runs of this scenario. It should be noted that the
number of vehicles along the x-axis indicates the total number
of vehicles present within that iteration of the scenario, and
does not represent an incremental increase on vehicle count
for a single test. To illustrate, a vehicle count of 20 indicates
an test where 10 vehicles were present in the simulation at
time step 0, and 10 more were added over the course of the
next 9 time steps; a vehicle count of 500 indicates a test where
250 vehicles were present in the simulation at time step 0, and
250 more were added over the course of the next 9 time steps.

In Figure 1.1 we note that the total pathing cost of our
algorithm is marginally higher than the total pathing cost
of both the non-collaborative smart parking and generic car
routing solutions for vehicle counts above 100. We recall that
the generic car routing solution shall always provide the lowest
possible total path cost, as each vehicle plots a route to its
destination without consideration to other vehicles, and our
percentage comparisons are based upon this.

Taken on average across all vehicle counts, when com-
pared to the car routing approach, the non-collaborative smart
parking simulation is 5.55% more expensive. In comparison,
our smart routing algorithm is 12.49% more expensive. This
means that the minimum possible time for a vehicle to reach
its goal is some 12.5% higher under our system than under a
system with no smart parking or smart routing, but it assumes
that congestion plays no role in the time taken to reach a
destination.

We know that busy road networks are particularly vul-
nerable to congestion; the corollary to this is that the more
congested a road, the higher the actual time taken to reach
a destination, whatever the ideal shortest time might be. The
reduction of congestion is a key goal in our ongoing research,
and Figure 1.2 illustrates the performance of our smart routing
algorithm in that context.

Statistically, we compare congestion against smart parking,
rather than generic car routing. This is a more meaningful and
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Fig. 1. Comparison of journey times and congestion level for standard
traffic scenario (half of traffic introduced at start of simulation, half introduced
linearly as simulation progresses).

challenging comparison for our algorithm, as smart parking has
uniformly lower congestion values than generic car routing.
Taking the average across all vehicle counts, the congestion
level obtained through the application of smart routing is
42.00% that of the congestion observed when simulating smart
parking without collaborative path finding.

At best, observed with 200 vehicles (road network occu-
pancy of approximately 25%), the congestion value obtained
through smart routing is 23.08% of that observed through smart
parking alone. Considering our points of maximum congestion,
smart routing reduces the congestion of these ’gridlock’ areas
by 25%, on average, and occasionally by as much as 58%
(with 420 vehicles in the network).

Taking Figures 1.1 and 1.2 together, we can also compare
the trends in relative performance. As vehicle count increases,
there is a very visible performance benefit in terms of con-
gestion level, while a far shallower performance hit in terms
of total pathing cost. This invites significant financial benefits
to the city as a whole: the road network is able to ferry more

vehicles, consistently; the reduction in congestion means that
time spent idling in heavy traffic is reduced, beneficial to
both the local environment and consumer; commercial districts
within a city can encourage a greater throughflow of high street
consumers.

B. Traffic Stress Point Scenario

The traffic stress point scenario is designed to present
a worst-case environment for our smart routing algorithm,
where all vehicles accessing our portion of the road network
arrive simultaneously and require collaborate routing en masse.
Figures 2.1 and 2.2 illustrate this scenario’s experimental
results.

100 200 300 400 500
0

500

1000

1500

2000

No. of Vehicles

To
ta

l P
at

hi
ng

 C
os

t

1) Stress Point Experiment

Smart Routing
Smart Parking
No Smart Parking

100 200 300 400 500

0

200

400

600

800

No. of Vehicles

To
ta

l C
on

ge
st

io
n 

Le
ve

l

2) Stress Point Experiment

Smart Routing
Smart Parking
No Smart Parking

Fig. 2. Comparison of journey times and congestion level for traffic stress
point scenario (high volume of traffic all introduced at start of simulation).

Comparing average total pathing cost increase once again
with the best-case, minimum-cost paths provided by generic
car routing, non-collaborative smart parking increases total
path cost by 5.88%, while smart routing increases total path
cost by 16.85%.

In the case of congestion, however, which we again
compare to the smart parking case in order to illustrate



how collaborative route planning and smart parking can be
employed in tandem to greater effect, there are significant
performance gains. Taken across all vehicle counts, smart
routing reduces congestion caused by traffic using the system
to 58.92%, relative to smart parking alone. At the best case,
which occurs with road network occupancy of approximately
10%, congestion is reduced by 70%.

The points of maximum congestion across all vehicle
counts are lowered by an average of 13.32%, with the best
case occurring at network occupancy of approximately 28%,
where the worst ’gridlock’ point’s congestion was reduced by
over 46%.

While these figures are not as impressive as those observed
in the standard traffic scenario, this is to be expected as the
stress point reflects a worst-case situation for our algorithm.
The standard traffic scenario, where traffic is added and
removed from the system over the course of time, is a better
representation of true traffic flow.

Even in this worst case, congestion caused by traffic
utilising smart routing is reduced by over 40% relative to smart
parking alone. This, combined with the comparatively lower
increase in total pathing cost, invites statistically significant
financial benefits, both to the commercial districts of cities
which might employ smart routing, and to enterprises whose
performance hinges upon flowing road networks.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have introduced the concept of smart
routing to the increasingly vital field of smart car parking.
We have presented a novel algorithm addressing multi-agent
path planning, and applied it to the problem of congestion
within major cities. The algorithm has been described in detail,
with domain-specific terminology employed where it eases
understanding of the underpinning mathematics. Two scenarios
have been presented, and the algorithm has been applied to
them. Results of those experiments have been provided and
discussed in some depth, and shown to be very encouraging.

The results outlined in Section V make a strong case for
the adoption of collaborative route planning, in conjunction
with existing smart parking technologies. The computational
complexity of the operation is reduced through the algorithmic
approach outlined; the relatively small increases in total route
length are not indicative of an overall increase in journey time,
as reduced congestion on the road network would benefit traffic
flow throughout. The reduced congestion caused by drivers
searching for spaces has clear implications for city governance,
both in terms of increased revenue from parking charges and
increased commercial and environmental benefits from better
traffic flow in metropolitan areas.

With the advent of GPS systems which communicate
through mobile telecommunications networks as a means of
relaying real-time traffic data, and the inclusion on many
internet-capable smartphones of GPS-based navigation soft-
ware, much of the required infrastructure to pursue this tech-
nology is already in place. Such systems already have the
capability to provide post-hoc assessments of traffic choke
points. Smart routing, if employed in conjunction with ex-
isting traffic-flow modelling techniques, can provide a deeper

insight into road network intersections which are exceptionally
vulnerable to congestion, while its commercial implementation
would help offset that very vulnerability.

This research aims to encourage the commercial explo-
ration of this potentially beneficial area of information tech-
nology. Future work in this area shall explore the application
of the prototype engineering solution to large road network
segments, drawn from cities noted for their traffic flow issues.

REFERENCES
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